ООО «НПП «СТРУКТУРНАЯ ДИАГНОСТИКА»

Спектрометр лазерный портативный ЛИС-01

Руководство по эксплуатации ЛИС01.092021-РЭ

Екатеринбург 2021 г.

Аннотация

Настоящий документ является руководством по эксплуатации портативного лазерного спектрометра ЛИС-01.

Руководство содержит описание спектрометра, принцип его работы, технические и метрологические данные и другие сведения, необходимые для эксплуатации изделия.

Производитель оставляет за собой право на внесение изменений в конструкцию изделия, входящее в его состав и вспомогательное программное обеспечение, настоящее руководство и в другую техническую или эксплуатационную документацию не нарушающее заявленных метрологических характеристик.

Рекомендуется пользоваться актуальной версией документации, размещенной на сайте <u>https://nppsd.ru/</u>.

Авторское право

© ООО «Научно-производственное предприятие «Структурная диагностика»», 2017-2021 г.

ООО «Научно-производственное предприятие «Структурная диагностика»» предоставляет право бесплатных печати, копирования, тиражирования и распространения этого документа в сети Интернет и локальных и корпоративных сетях обмена электронной информацией. Не допускается взимание платы за предоставление доступа к этому документу, за его копирование и печать. Не разрешается публикация этого документа любым другим способом без письменного согласия ООО «Научно-производственное предприятие «Структурная диагностика»».

Оглавление

1.	Основные сведения об изделии и технические данные				
	1.1.	Назначение и область применения4	1		
	1.2.	Особенности	5		
	1.3.	Требования к уровню персонала6	6		
	1.4.	Основные метрологические и технические характеристики7	7		
	1.5.	Конструктивное исполнение9)		
	1.6.	Комплектация10)		
2.	Подгот	овка спектрометра к работе11	I		
3.	Эксплу	иатация в условиях пониженных температур13	3		
4.	Описан	ние назначения программного обеспечения, его структуры и выполняе	мых		
фу	нкций		5		
	4.1.	Интерфейс пользователя15	5		
	4.2.	Измерение образца19)		
	4.3.	Режим просмотра архива измерений23	3		
	4.4.	Режим «Сравнение»25	5		
	4.5.	Настройки	2		
	4.6.	Калибровка47	7		
	4.7.	Редактор марочника55	5		
	4.8.	Поверка	7		
	4.9.	Эталоны	3		
5.	Хранен	ние и эксплуатация изделия60)		
6.	Сведен	ния об утилизации61	I		
Пр	иложение	1. Возможные неисправности и методы их устранения62	2		
Пр	иложение	2. Возможные сообщения об ошибках и причины их появления 63	3		
Пр	иложение	3 Очистка защитного стекла65	5		
Пр	иложение	4. Замена аккумуляторных батарей67	7		
Пр	Приложение 5. Установка смартфона на ручку спектрометра с помощью держателя				
для	а телефон	ıa69	9		
Изг	отовител	ь	2		
	Гарантий	і́ный талон73	3		
	Требован	ния к условиям эксплуатации73	3		
	Гарантия изготовителя74				
	Условия	прекращения гарантийных обязательств75	5		

1. Основные сведения об изделии и технические данные

1.1. Назначение и область применения

Спектрометр лазерный портативный ЛИС-01 (далее Спектрометр) предназначен для измерения массовой доли химических элементов в металлах и сплавах. Спектрометр обеспечивает высокую скорость при определении таких химических элементов, как C, Si, Mn, Cr, Ni, Fe, Mg, Al, V, Cu, Zn, Sn, Mo, Ti, W, Nb, Pd, Ag, Cd, Pt, Au, Pb и других.

Спектрометр может применяться в следующих областях:

- Рассортировка сталей по маркам;
- Стилоскопирование основных и сварочных материалов и готовой продукции;
- Сортировка лома черных и цветных металлов;
- Спектральный анализ в лабораторных исследованиях;
- Контроль качества химического состава при производстве изделий из металлов и сплавов.

1.2. Особенности

- Точность. Спектрометр ЛИС-01 обеспечивает высокую разрешающую способность на всём диапазоне измерения, что обеспечивает достаточную точность для определения химического состава образцов.
- Портативность. Небольшие габариты и масса сравнимые с ручным электроинструментом.
- Надежность. Отсутствие хрупких элементов по сравнению с рентгенофлуоресцентными (РФА) спектрометрами. Выполненный из металла носовой элемент корпуса позволяет работать с острой металлической стружкой, не опасаясь за сохранность прибора. Защита оптических элементов с помощью защитного стекла обеспечивает дополнительную защиту от механических повреждений внутренних элементов прибора.
- Встроенный марочник. По результатам анализа на экран спектрометра может выводиться марка стали или сплава, соответствующая процентному содержанию химических элементов контролируемого образца. Спектрометр может быть укомплектован любым марочником по желанию заказчика.
- Безопасность. Класс безопасности лазерного излучения 3b.
- Монолитный корпус «все в одном», на основной ручке которого расположена кнопка запуска измерений.
- **Для визуализации** данных и управления используется сенсорный ЖК-индикатор с диагональю 5 дюймов.
- **Питание** спектрометра осуществляется от сети 220 В через адаптер питания с выходным напряжением 19.5 В, либо от четырех аккумуляторов типоразмера 18650.

1.3. Требования к уровню персонала

Работа со спектрометром и считывание показаний может выполняться специалистом с базовыми навыками работы с ПК.

Внимание! Спектрометр содержит источник лазерного излучения, класса 3b. Не допускается наведение выходного отверстия прибора на человека или животных. Персонал должен быть проинформирован об опасности поражения лазерным излучением и мерах защиты органов зрения от лазерного излучения ИК спектра.

Руководство по эксплуатации изделия также доступно на сайте производителя в разделе «Скачать».

1.4. Основные метрологические и технические характеристики

Основные метрологические характеристики спектрометра приведены в таблице 1.

Таблица 1 Метрологические характеристи
--

Наименование характеристики	Значение		
Спектральный диапазон, нм	177-350		
Спектральное разрешение, нм, не более*	0.5		
Чувствительность, (усл. ед.)/(%), не менее**	10 000		
Пределы допускаемого относительного СКО выходного сигнала, %**	10		
Нестабильность выходного сигнала спектрометра за 6 часов, %**	15		
* значение нормировано для Ni на длине волны 221.65 нм с массовой долей Ni не более 15 %.			
** значения нормированы для Cr (284.33 нм), Mn (279.83 нм), Si (288.16 нм), Ni (221.65 нм) с массовой долей этих элементов не более 15 %.			

Основные технические характеристики спектрометра приведены в таблице 2.

Таблица 2 Технические характеристики

Наименование характеристики	Значение	
Источник возбуждения спектра	твердотельный лазер	
Длина волны источника возбуждения, нм	1064	
Класс безопасности излучения по ГОСТ Р 50723-94	3b	
Время технологической паузы для устранения конденсата на поверхности оптических элементов, не менее, час	2	
Время выхода на режим из состояния «отключено», не более, сек	60	
Время выхода на режим из состояния «ожидание», не более, сек	3	
Минимальное время измерения, сек	1	
Средство отображения результатов измерения	ЖК-индикатор 5 дюймов	
Интерфейсы передачи данных	WiFi	
Тип внутреннего источника питания	4 литиевых аккумуляторных батареи 18650	
Тип внешнего источника питания	источник напряжения постоянного тока	
Параметры электрического питания		
от сетевого адаптера		
напряжение переменного тока, В	от 200 до 240	
частота переменного тока, Гц	50	
от аккумулятора		
напряжение постоянного тока, В	от 9 до 15	
Максимальная потребляемая мощность, Вт	25	
Материал корпуса	пластик	
Степень защиты от внешних воздействий, не хуже	IP40	
Степень защиты от внешних воздействий при использовании защитного чехла, не хуже	IP52	
Габаритные размеры (длина×ширина×высота),		
	43×13×23	
- транспортировочного кейса	63×42×36	
Масса, кг. не более:		
- спектрометра	4.0	
- транспортировочный кейс со спектрометром	13	
Условия эксплуатации:		
- температура окружающего воздуха, °С	от минус 15 до плюс 40	
- относительная влажность воздуха, %	от 20 до 95	
Средняя наработка на отказ. часов. не менее	10000	

1.5. Конструктивное исполнение

Конструктивно спектрометр выполнен в пластиковом ударопрочном корпусе. Внешний вид спектрометра с указанием расположения разъемов, индикации и органов управления приведен на рисунке 1. В передней части корпуса расположено отверстие измерительного канала 1. Разъем для подключения внешнего блока питания 2 расположен на боковой панели. На основной рукоятке расположена кнопка запуска измерения 3. Графический ЖК-индикатор 4 и кнопка включения/отключения питания с индикатором состояния 5 расположены на верхней крышке. Батарейный блок 6 для размещения четырех аккумуляторов типоразмера 18650 расположен в нижней части корпуса.

Рисунок 1

- 1 отверстие измерительного канала
- 2 разъем для подключения внешнего блока питания
- 3 кнопка запуска измерения
- 4 ЖК-индикатор
- 5 кнопка включения/отключения питания с индикатором состояния
- 6 батарейный блок

1.6. Комплектация

Наименование	Обозначение	Количество
Спектрометр лазерный портативный	ЛИС-01	1 шт.
Сетевой адаптер	-	1 шт.
Транспортировочный кейс	-	1 шт.
Аккумуляторные батареи	-	8 шт.
Контрольный образец	-	1 шт.
Запасное защитное стекло	-	1 шт.
Термопринтер	-	1 шт.
Защитный чехол	-	1 шт.
Плавкий предохранитель	-	1 шт.
Руководство по эксплуатации	ЛИС01.ХХХХХХ-РЭ	1 экз.

Спектрометр поставляется в следующей комплектации:

2. Подготовка спектрометра к работе

Перед началом эксплуатации спектрометра необходимо проверить отсутствие на его корпусе и разъемах механических повреждений, следов окисла, ржавчины или загрязнений. При наличии загрязнения нужно удалить их с помощью влажной салфетки или мягкой ветоши.

Внимание! Для удаления загрязнения не использовать химически активные жидкости (спирт, ацетон, растворитель, моющие средства и т.п.).

Внимание! Запрещается эксплуатация устройства с механическими повреждениями или следами коррозии.

Внимание! Не допускается производить измерение на легковоспламеняющихся и взрывчатых материалах, жидкостях и их испарениях.

При использовании в качестве электропитания сменных аккумуляторных батарей перед началом эксплуатации следует произвести их зарядку и установку в батарейный отсек прибора. Измерения при индикации заряда аккумулятора в виде одной красной палочки (в верхнем левом углу) приведут к заниженным измеренным концентрациям.

Внимание! Запрещается эксплуатация аккумуляторных батарей без блоков защиты, а также с нарушением целостности внешней оболочки батареи.

При смене климатических условий эксплуатации прибора, в частности при перемещении прибора из зоны с холодным воздухом в зону с теплым воздухом, на поверхности оптических элементов возможно образование конденсата. Эксплуатация прибора при образовании конденсата на узлах и поверхностях прибора не допускается.

В случае если прибор длительное время находился в холодном помещении или на улице, то при переносе его в теплое помещение перед началом эксплуатации требуется выдержать технологическую паузу - <u>не</u> менее 2х часов.

Не допускается работа с незащищенным прибором под дождём.

Нажмите и удерживайте кнопку включения прибора. Через 2-3 секунды на экран будет выведено изображение в виде трех точек и начнется загрузка программного обеспечения (ПО). После завершения загрузки ПО на экране появится стартовое окно программы.

В случае если батареи были разряжены, работа прибора будет остановлена. Для продолжения работы необходимо извлечь из батарейного отсека разряженные аккумуляторы и установить их в батарейный отсек. Приборы, выпущенные после 1 декабря 2018 года снабжены зарядным устройством аккумуляторных батарей. Индикатор заряда расположен рядом с разъемом питания на боковой панели спектрометра.

Внимание! Не допускается использование в одном комплекте аккумуляторов разных производителей, разных ёмкостей и моделей, а также аккумуляторов с разным уровнем заряда.

Внимание! В случае обнаружения признаков задымления или воспламенения следует незамедлительно прекратить эксплуатацию изделия и принять меры по предотвращению возникновения пожара или опасной ситуации.

После запуска прибора, произведите контрольное измерение с помощью контрольного образца (КО), входящего в комплект поставки прибора.

Приложите КО к отверстию измерительного канала спектрометра. Нажав кнопку на ручке прибора, запустите режим серийного измерения. Во время измерения следите за тем, чтобы КО плотно прилегал к носику спектрометра. После окончания процесса измерения проконтролируйте соответствие химического состава показаниям на ЖК-индикаторе прибора. При необходимости корректировку можно выполнить с помощью кнопки «Контрольный образец» в меню настроек прибора или рекалибровку по эталонным образцам, см п. 4.6. Проверку работоспособности прибора следует проводить ежедневно перед началом работы.

Во избежание выхода аккумуляторных батарей из строя не допускается длительное хранение прибора с установленными в него аккумуляторными батареями, а также не допускается хранение полностью заряженных аккумуляторных батарей. Для длительного хранения батареи должны быть разряжены до уровня 60-75%.

3. Эксплуатация в условиях пониженных температур

Спектрометр является электронно-оптическим прибором. С точки зрения эксплуатации оптические компоненты спектрометра подвержены таким факторам, как загрязнение оптических поверхностей или образующийся на них конденсат.

Загрязнение оптических поверхностей внутри корпуса прибора является длительным процессом и приводит к постепенному долговременному изменению в худшую сторону метрологических характеристик прибора.

Конденсация влаги, содержащейся в окружающем воздухе, приводит к временному непродолжительному прекращению прибором выполнения функций по назначению.

Конденсат (в виде инея или росы) образуется на холодной поверхности материала, если температура окружающего воздуха и его влажность превышает определенный порог. Для примера, если в теплое помещение с относительной влажностью воздуха 80% занести холодный предмет, чья температура будет на 3.5° ниже, чем температура воздуха в данном помещении, то на поверхности этого предмета образуется конденсат. В качестве справочной информации о критериях возникновения конденсата возможно использование формулы расчета или табличный метод, представленный в стандарте ISO8502-4.

Таким образом, для исключения влияния конденсата на работоспособность спектрометра мы рекомендуем следовать следующим правилам эксплуатации:

1. В случае нахождения прибора длительное время на холоде (например, при транспортировке), перед включением необходимо занести его в теплое помещение и выдержать технологическую паузу (не менее 2 часов). Длительность технологической паузы зависит от температуры и влажности помещения. Чем выше влажность и ниже температура, тем более длительной должна быть технологическая пауза. Также на момент технологической паузы рекомендуем снимать защитный чехол с прибора. В случае если снять защитный чехол не представляется возможным, то следует увеличить длительность технологической паузы на 1-1.5 часа.

2. В случае эксплуатации спектрометра вне теплого помещения оператор должен сделать следующее:

- надеть защитный чехол на прибор;
- включить прибор и нажать кнопку «Низкие температуры»;
- с помощью перемещения ползунков на экране, выбрать примерную температуру на улице и планируемое время измерений (Рисунок 3);
- прибор начнет прогрев, информируя об ориентировочном времени, за которое он прогреется до рассчитанной температуры (прогрев прибора для работы при отрицательных температурах ограничен 30 градусами);
- настоятельно рекомендуем перед началом работы проводить измерение контрольного образца, нажав на кнопку «Измерить КО»;
- около текущей температуры корпуса будут отображаться стрелочки, обозначающие нагрев и значок снежинки, которая говорит о том, что включен режим Низкие температуры;

- при работе с прибором оператор должен контролировать значение температуры внутри корпуса прибора по индикатору температуры в верхней части основного экрана;
- при температуре ниже минимальной рабочей, дальнейшая эксплуатация прибора невозможна. На экране будет выведена надпись «Пожалуйста, подождите». В этом случае следует выключить прибор, занести его в отапливаемое помещение и выдержать технологическую паузу перед дальнейшей эксплуатацией.

Следует учитывать, что эксплуатация прибора в условиях пониженных температур существенно снижает уровень заряда аккумуляторных батарей.

Внимание! Во время прогрева прибор не будет уходить в сон.

После перехода в главное окно программы (Рисунок 4) можно изменить настройки или отключить прогрев (п. 4.5.2.3).

4. Описание назначения программного обеспечения, его структуры и выполняемых функций

4.1. Интерфейс пользователя

- 4.1.1. Программное обеспечение спектрометра является встроенным и хранится в энергонезависимой памяти прибора. У прибора отсутствуют проводные или беспроводные интерфейсы связи для доступа к памяти прибора и настройкам ПО. Результаты всех измерений также хранятся в энергонезависимой памяти.
- 4.1.2. После включения питания на ЖК-индикатор выводится окно с возможностью выбора эксплуатации прибора при низких температурах (Рисунок 2).

- 4.1.3. Для начала работы необходимо дождаться смены надписи «Пожалуйста, подождите...» на «Готов к работе». Рекомендуем провести измерение контрольного образца, нажав на кнопку «Измерить КО». Прогрев прибора для работы на улице можно включить через меню настроек (п.4.5.2.3).
- 4.1.4. При нажатии на кнопку «Низкие температуры» появляется возможность выбора температуры окружающей среды (ниже 0°С) и ориентировочное время работы. Более подробное описание об эксплуатации прибора на улице смотри в разделе 3 настоящего руководства.

Рисунок 3 Окно настроек для работы при отрицательных температурах

- 4.1.5. После выбора условий эксплуатации пользователь попадает в главное окно программы работы с прибором.
- 4.1.6. В верхней части ЖК-индикатора (Рисунок 4) отображается информация об уровне заряда аккумуляторных батарей, значок принтера свидетельствует подключению прибора к сети принтера, текущее значение температуры в градусах Цельсия внутри спектрометра и круг, который при корректной работе прибора должен быть окрашен в зеленый цвет.

Рисунок 4 Главное окно ПО спектрометра

4.1.7. Индикация заряда аккумулятора может отображаться тремя способами: работа от аккумуляторных батарей, заряд аккумуляторов, работа от сети.

- значок батарейки с отображением уровня заряда аккумуляторных батарей, от которых работает прибор.

- значок батарейки с вилкой сетевого шнура. В приборе есть аккумуляторы и подключен шнур питания от сети 220 В. Будет производиться зарядка аккумуляторов.

• значок пустой батарейки с вилкой сетевого шнура. В приборе нет аккумуляторов, подключен шнур питания. Если аккумуляторы были в приборе, а при включении шнура питания стал отображаться этот значок, то скорее всего какой-то аккумулятор пришел в негодность. 4.1.8. Управление режимами работы спектрометра осуществляется по нажатию на интерактивные кнопки на ЖК-индикаторе. В нижней части ЖК-индикатора находятся кнопки управления режимами работы спектрометра:

• кнопка печати текущего результата измерений на беспроводном термопринтере, который входит в комплект поставки спектрометра;

- кнопка просмотра архива всех измерений, выполненных на спектрометре, подробнее в пункте 4.3;

00

- кнопка запуска режима съемки «Сравнение», подробнее в пункте 4.4;

- кнопка перехода в окно управления настройками спектрометра, подробнее в пункте 4.5.

- 4.1.9. Управление работой встроенного ПО осуществляется посредством нажатия на элементы меню, за счет поддержки функции сенсорного экрана.
- 4.1.10. кнопка обращения к службе технической поддержки. При возникновении вопроса в процессе измерений, можно отправить спектры измерений с текстовым пояснением через сеть интернет (WiFi). Для этого нажмите эту кнопку со знаком вопроса, ознакомьтесь с порядком отправки данных, заполните поля ввода данных (Рисунок 5) и нажмите кнопку «Отправить». После успешной загрузки данных появится окно с надписью «Загрузка завершена».
- 4.1.11. Функция сохранения спектров для отправки в службу технической поддержки включается с помощью кнопки «Данные для поддержки» в окне настроек параметров измерения (п. 4.5.2.3). По умолчанию данная функция включена.

	Подд	ержка
Телефон	892210912	52
Сообщение		
Пос	леднее	Bce
Если воз измерени сеть инт в нашу с. 1. Укажи связи. 2. Выбер сделанни только п 3. Нажми сеть WiF пароль с wiFi мож телефон Специал с вами в 08:00 до	ник вопрос п ия, вы можете ернет (WiFi) лужбу техни те ваш конта ите отправља и с после вкл оследний. те кнопку от і с выходом п і с выходом п і с выходом п то сети. При но включите е. ист службы течение 4 ча 18:00 MCK.	то результатам ге отправить через спектры для анализа ческой поддержки. актный телефон для ять все спектры, нючения прибора, или гправить, выберите з интернет, укажите работе на улице сеть ь на вашем мобильног поддержки свяжется всов в рабочие дни с

Рисунок 5 Окно обращения в службу технической поддержки

4.1.12. Внимание! Программное обеспечение постоянно совершенствуется и интерфейс ПО конкретного прибора может отличаться от описанного в руководстве пользователя расположением кнопок, последовательностью действий и способом отображения данных.

4.2. Измерение образца

- 4.2.1. Основной режим работы прибора, запускается одиночным нажатием кнопки на рукоятке прибора. Режим предназначен для экспресс-оценки массовой доли химических элементов и определения марки сплава.
- 4.2.2. Пользователь может контролировать расположение измеряемого образца относительно входного отверстия прибора с помощью встроенной видеокамеры.
- 4.2.3. Внимание! Для обеспечения достоверности результатов измерения следует уделить особое внимание качеству прилегания измеряемого образца к входному отверстию прибора.

Рисунок 6 Результаты измерения стали марки 10ХСНД

- 4.2.4. В конце каждого измерения выводится таблица основных химических элементов образца с указанием процента их содержания.
- 4.2.5. По окончанию измерения выводится до трех наиболее близко подходящих к контролируемому образцу марок стали или сплава по выбранному марочнику (п.4.7.2). Просматривать подходящие марки можно с помощью кнопок и и .
- 4.2.6. С помощью кнопки **н** можно выбрать к сравнению с полученным результатом измерения другую марку из любого марочника. Кнопка появляется после пролистывания подходящих марок или сразу, если такие марки не были найдены.
- 4.2.7. Спектрометр поставляется с предустановленными марочниками: Базовый, Полный, AISI/ASTM, DIN, JIS и др. Базовый марочник содержит марки сталей и сплавов по согласованию с заказчиком. Полный марочник содержит марки сплавов по ГОСТ: более 3000 марок. При необходимости пользователь имеет возможность добавить марки сплавов в справочник, подробнее в п. 4.7.

- 4.2.8. Режим серийной съемки предназначен для определения состава образца по нескольким прожигам с определением СКО измерения (см. п.4.2.12). Серийная съемка позволяет получать более достоверный результат по сравнению с экспресс-оценкой.
- 4.2.9. Запуск серии измерений осуществляется по длительному удержанию в течение двух секунд кнопки рукоятки спектрометра. Прибор начинает автоматически выполнять последовательные замеры. После каждого замера необходимо сдвигать исследуемый образец, так чтобы очередное измерение было в новой точке. Результаты всех выполненных замеров автоматически усредняются, усредненные значения в виде процентного содержания химических элементов в контролируемом образце и СКО выводятся на ЖК-индикатор.
- 4.2.10. Измерения массовых долей химических элементов в металлах и сплавах осуществляется по аттестованным (стандартизованным) методикам (методам) измерений. Длины волн определяемых элементов, выбор стандартных образцов и порядок построения калибровочных зависимостей определяется методикой (методом) измерений для конкретного объекта и хранится в соответствующей базе данных в энергонезависимой памяти прибора.
- 4.2.11.Для измерения образцов сложной формы или с неровными поверхностями рекомендуем использовать функцию Позиционирования (п.4.5.2.3).
- 4.2.12. Контроль качества определения концентрации элемента. При серийном измерении прибор анализирует качество каждого измерения, недостоверные измерения отбрасываются. В случае, если процент недостоверных измерений превышает 50%, ячейка таблицы закрашивается красным цветом. Для достоверных измерений анализируется отношение СКО к среднему значению измерений (формула 1). Для численной оценки качества измерения в таблице дополнительно выводится точное значение СКО. Расчет СКО выполняется по формуле 2 (ГОСТ Р 8.736-2011).

$$D = \frac{S_0}{\bar{x}} \cdot 100\% \tag{1}$$

- где *D* отношение СКО к среднему значению достоверных измерений,
 - *S*₀ среднее квадратическое отклонение,
 - *x* среднее арифметическое достоверных измерений.

В зависимости от полученного значения *D* ячейка с измеренным значением также будет подкрашиваться определенным цветом (Таблица 3).

Измеренное	Величина D при	Величина D при	Величина D при
значение	зеленой	желтой	красной
концентрации	индикации	индикации	индикации
0.0 - 0.1	< 90	90 – 250	> 250
0.1 – 0.2	< 50	50 – 71	> 71
0.2 - 0.5	< 40	40 - 46	> 64
0.5 - 2.0	< 20	20 – 35	> 35
2 – 10	< 10	10 – 25	> 25
10 – 100	< 10	10 – 15	> 15

Таблица 3. Соответствие цвета ячейки диапазону значений D

$$S_0 = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$
(2)

где S₀ - среднее квадратическое отклонение,

n – количество достоверных измерений,

 $x_i - i$ -ое измерение,

x – среднее арифметическое достоверных измерений.

4.2.13. Отображение слева восклицательного знака (!) информирует о чрезмерно высокой интенсивности спектральной линии (Рисунок 7).

Рисунок 7 Ошибка измерения марганца в нержавеющей стали

Если возникли такие ошибки, то необходимо:

- протереть защитное стекло;
- убедиться в хорошем прилегании образца;
- провести повторное измерение.

4.3. Режим просмотра архива измерений

- 4.3.1. Режим просмотра архива используется для просмотра измерений, как в настоящем, так и в другой день.
- 4.3.2. Сверху отображается название группы, в которой хранится просматриваемое измерение (см. п.4.5.1), дата проведения измерения и время.

Рисунок 8 Окно архива измерений

- 4.3.3. В каждой группе показывается общее количество измерений и номер просматриваемого в данный момент.
- 4.3.4. В архиве есть возможность отправки спектров конкретного измерения через кнопку обращения к службе технической поддержки (п. 4.1.10). Спектры измерений доступны за последние двое суток.
- 4.3.5. Показывается информация об измерении: состав, СКО (если была проведена серия измерений), подходящая марка из выбранного марочника и возможности выбора другой марки для сравнения и смены марочника (см п.п. 4.2.5-4.2.6), информация о сравнении (если данное измерение было выполнено в режиме «Сравнение», см. п. 4.4).

4.3.6. Внизу экрана расположены следующие кнопки:

- - удаление данного измерения;
- К переход к предыдущей группе измерений;
- переход к предыдущему измерению;
- переход к следующему измерению (возможно только в случае, если отображаемое измерение не является последним);
- переход к следующей группе (возможно только в случае, если данная группа не является последней);
- + добавление данного измерения к усреднению.
- 4.3.7. С помощью кнопки в виде плюса есть возможность усреднения нескольких измерений из архива, не обязательно единичных.
 - 4.3.7.1. Нажмите на кнопку , на месте плюса появится цифра, обозначающая количество выбранных измерений - 1, а рядом

появится знак минус (по нему можно ориентироваться, какие измерения уже добавлены к усреднению).

- 4.3.7.2. Нажав на кнопку выбранное ранее измерение исключается из усреднения.
- 4.3.7.3. После добавления нужных измерений в усреднение, необходимо нажать на кнопку с изображением выбранного числа измерений.
- 4.3.7.4. На экране появится рассчитанное среднее значение.
- 4.3.7.5. Полученный результат можно сохранить, нажав на кнопку

4.4. Режим «Сравнение»

- 4.4.1. Режим «Сравнение» предназначен для выполнения сортировки исследуемых образцов.
- 4.4.2. Поддерживается три типа сравнения:
 - сравнение на соответствие составу имеющегося в наличии образца,
 - сравнение на соответствие составу эталонного образца,

- сравнение на соответствие марке материала.
- 4.4.3. Выберите в настройках базу данных, которая соответствует измерениям (подробнее см. п. 4.5.1.7), и включите режим сравнения,

ক্ত

нажав на пиктограмму с изображением весов

4.4.4. При включении режима сравнения отображается диалоговое окно для выбора типа сравнения. Выбор осуществляется нажатием на соответствующую кнопку: Измерение (п. 4.4.5), Эталоны (п. 4.4.6) или Марки (п. 4.4.7).

Рисунок 9 Выбор типа сравнения

- 4.4.5. Сравнение с измерением образца.
 - 4.4.5.1. Абсолютная точность показаний спектрометров зависит от температуры окружающей среды, особенно это влияние может быть заметно для портативного прибора, который должен работать в широких диапазонах температур.
 - 4.4.5.2. Сравнение с измерением предназначено для исключения влияния внешних факторов и выполнения с высокой точностью процедуры сортировки исследуемых образцов в сравнении с образцом с заранее известным содержанием и концентрацией химических элементов.

4.4.5.3. После нажатия кнопки ОК осуществляется измерение образца в режиме серийного измерения, который будет выполнять роль эталона, а в дальнейшем производятся измерения исследуемых образцов с отбраковкой по принципу «Да/Нет».

Рисунок 10 Окно измерений в режиме сравнения с измерением образца

4.4.5.4. В данном режиме в правой части таблицы концентраций химических элементов отображаются числа, соответствующие концентрации для контрольного измерения, а в левой части фактически измеренные значения исследуемого образца.

4.4.5.5. Для облегчения принятия решения значения концентраций в столбце эталона выделяются цветом (Таблица 4).

Таблица 4. Соответствие цветовой индикации отклонению измеренной концентрации от эталонной

Диапазон концентраций элемента в эталонном образце	Зеленый	Желтый	Красный
0.0 – 0.1	отклонение менее 90%	отклонение в пределах 90-99%	отклонение более 99%
0.1 – 0.2	отклонение менее 50%	отклонение в пределах 50-58%	отклонение более 58%
0.2 – 0.5	отклонение менее 40%	отклонение в пределах 40-46%	отклонение более 46%
0.5 – 2.0	отклонение менее 20%	отклонение в пределах 20-23%	отклонение более 23%
2 - 100	отклонение менее 10%	отклонение в пределах 10-12%	отклонение более 12%

4.4.5.6. Выход из режима сравнения с эталоном осуществляется

010

повторным нажатием на пиктограмму

- 4.4.6. Сравнение на соответствие эталону.
 - 4.4.6.1. При переходе в режим пользователю предлагается произвести выбор из списка заранее сохраненных в памяти прибора эталонных образцов (см. п. 4.9 «Эталоны»).

Измерение		Эталоны	Марки			
<	ug115		>			
	Концентрация, %					
С		0.11				
Si		0.23				
Mn		0.43				
Cr		0.81				
		1.63				
cu		0.17				
	OK					
	UK .					

Рисунок 11 Окно выбора эталона

- 4.4.6.2. Выбор образцов производится с помощью кнопок влево/вправо в верхней части рабочего экрана прибора.
- 4.4.6.3. После того, как эталон был выбран, прибор переходит в режим измерения.
- 4.4.6.4. В данном режиме в правой части таблицы концентраций химических элементов отображаются концентрации элементов выбранного эталона, а в левой части - фактически измеренные значения исследуемого образца.
- 4.4.6.5. Для упрощения визуального восприятия значения концентраций в столбце выбранного эталона выделяются цветом (Таблица 3).
- 4.4.7. Сравнение на соответствие марке материала.
 - 4.4.7.1. При переходе в режим пользователю предлагается выбрать элемент марочника для сравнения (Рисунок 12).
 - 4.4.7.2. Выбор марки производится с помощью выпадающего списка марок, который появляется при нажатии раскрывающей кнопки .

4.4.7.3. Наименование марочника показано над списком марок. Марочник можно менять, нажимая на стрелки вправо/влево. Редактирование марочников описано в п.4.7.

Рисунок 12 Окна выбора марки для сравнения

4.4.7.4. Поиск марки по названию можно осуществить с помощью кнопки с

- 4.4.7.5. После нажатия кнопки ОК прибор переходит в режим измерения.
- 4.4.7.6. В данном режиме в правой части таблицы концентраций химических элементов отображается состав выбранной марки материала, а в левой части фактически измеренные значения исследуемого образца (Рисунок 13).
- 4.4.7.7. Существует возможность в окне измерения выбрать другую марку

для сравнения с помощью кнопки (подробное описание выбора марки см. п.4.2.6).

Рисунок 13 Окно измерений в режиме сравнения с маркой

4.4.7.8. Для упрощения визуального восприятия попадания измеренного образца в марку в столбце выбранной марки концентрации выделяются цветом (*Таблица 5*).

Таблица 5. Соответствие цветовой индикации отклонению измеренной концентрации от диапазона концентраций элемента в марке

Вариант измерения	Зеленый	Желтый	Красный
Одиночное	Попадает в	отклонение	отклонение
измерение	диапазон марки	менее 20%	более 20%
Измерение в серии	Попадает в диапазон марки (с учетом СКО)	отклонение менее 20%	отклонение более 20%

Внимание! Цветовая индикация результата измерения образца, не используя режим сравнения, аналогична той, что описывается в таблице *5*.

4.5.	Настройки			
	28.1 °C 🔘			
S/N: 090 14/09/2020 14:06:46	Наименование ПО: LIS Версия ПО: 1.08.04			
Эталоны	оны Марочник			
Калибровка Контрольный образец				
Группа: 20200914_1				
Расширенные настройки				
< Нержавеющая сталь >				
Выбирать БД автоматически				
ок				

Рисунок 14 Окно настроек спектрометра

- 4.5.1. Окно настроек спектрометра содержит следующие интерфейсные элементы:
- 4.5.1.1. Наименование ПО и обозначение его версии.
- 4.5.1.2. Кнопка «Эталоны» предназначена для редактирования списка образцов и задания их состава. Образцы используются в режимах «Сравнение», «Калибровка».
- 4.5.1.3. С помощью кнопки «Марочник» можно выбрать необходимый набор марок, если их заведено больше одной, либо запустить редактор марочника (п. 4.7) для изменения состава марки или добавления новой.
- 4.5.1.4. Кнопка «Калибровка» предназначена для рекалибровки (градуировании) показаний спектрометра по двум и более образцам с известным химическим составом, подробнее в п. 4.6.
- 4.5.1.5. Кнопка «Контрольный образец» предназначена для выполнения проверки и настройки параметров работы прибора при измерении контрольного образца, входящего в комплект поставки прибора. При

успешном выполнении настройки, после измерения контрольного образца, на экран должна выводиться марка с его названием.

- 4.5.1.6. Кнопка задания наименования группы предназначена для идентификации группы измерений в архиве. По умолчанию имя группы равно текущей дате.
- 4.5.1.7. Переключатель выбора базы данных содержит настроечную информацию для каждого класса контролируемых изделий. Для получения информации о базе данных (элемент основы, список определяемых элементов, диапазонов концентраций -Рисунок 15) нажмите на название базы.

	Сталь						
	Основа: Fe						
	Элемент	Мин.	Макс.	Шаг			
1	С	0.0	4.0	0.1			
2	Si	0.0	3.0	0.1			
3	Mn	0.0	2.0	0.1			
4	Ni	0.0	5.0	0.1			
5	Cr	0.0	5.0	0.1			
6	Мо	0.0	6.0	0.3			
7	W	4.0	20.0	1.0			
8	V	0.0	5.0	0.1			
9	Cu	0.0	1.0	0.1			
10	AI	0.0	0.5	0.1			
11	Fe	90.0	100.0	1.0			
12	Co	0.0	10.0	0.5			
13	Ti	0.0	0.5	0.1			
	ок						

Рисунок 15 Информация о базе данных «Сталь»

4.5.1.8. Состав и структура баз данных являются метрологически значимыми компонентами программного обеспечения. Обновление или изменение базы данных производится Производителем по согласованию с Заказчиком.

- 4.5.1.9. Кнопка «Выбирать БД автоматически» предназначена для включения режима автоматического выбора подходящей базы данных. Например, позволяет автоматически выбрать базу данных настроек «Стали» для черных сталей, если определено содержание железа в образце более 90%.
- 4.5.2. Кнопка «Расширенные настройки» открывает дополнительное меню:

HH)	30.3 °C 🔘		27.4 °C 🦲		26.7 °C 🔘			
LIS Mobile		¹ Samsung Galax ² Ml Band 2	y S7	PDF	PDF по одному измерению			
Интерфейс	Измерение	³ Redmi	~	•	CSV по группе			
Отчет	Bluetooth				Печать			
Очистить архив	Дата/Время							
Обновить ПО	Дамп		~	•				
Безопасность	Поверка							
		Поиск устройств	///////////////////////////////////////					
Основные настройки		Поиск Отпр	авить ОК		ОК			

Рисунок 16 Дополнительные настройки спектрометра

- «LIS Mobile» открывает дополнительные меню для работы с мобильным приложением (см. п.4.5.2.1).
- «Интерфейс» открывает дополнительные меню настройки интерфейса (см. п.4.5.2.2).
- «Измерение» открывает дополнительное меню настройки измерения (см. п.4.5.2.3).
- «Отчет» настройка типа отчета: одностраничный pdf-отчет по одному измерению или табличный csv-отчет по серии измерений.

Если выбран режим csv-отчета каждый раз при его формировании будет выводиться диалог для выбора диапазона данных:

Рисунок 17 Окно выбора диапазона данных

В этом же разделе можно осуществить принудительное подключение к сети принтера – кнопка «Печать». Может понадобиться, если по каким-то причинам прибор не смог установить связь с термопринтером.

- «Bluetooth» выбор мобильного устройства для приема и передачи данных через Bluetooth. На выбранное устройство в режиме просмотра архива измерений можно выполнить передачу pdfотчета с результатами измерения.
- «Очистить архив» удаление всех записей в архиве.
- Кнопка установки даты и времени.
- «Обновить ПО» загрузка на спектрометр новой версии программного обеспечения, полученной от производителя. Для обновления ПО требуется наличие сети WiFi с доступом в Интернет. Поспе загрузки обновления нажмите кнопки прибор перезагрузился «Установить», чтобы И установил загруженные изменения. Чтобы не применять обновление нажмите «Отмена».
- «Дамп» запись и отправка производителю служебной информации для возможности удаленной диагностики и настроек параметров работы прибора.
- «Безопасность» установление пароля на разные действия с прибором. Возможны следующие варианты: пароль для включения прибора, пароль меню Настройки, пароль администратора (Рисунок 18). Пароль для включения прибора будет запрашиваться при каждой загрузке ПО (перезагрузка прибора или его включение). Пароль доступа к меню Настройки запрашивается для перехода к

настройкам прибора при нажатии кнопки . Пароль администратора необходим для ограничения круга лиц, которые могут отправлять информацию с прибора (отправка Дампа и сообщений через кнопку со знаком вопроса) или загружать обновления на прибор.

На экране установки пароля можно выбрать «Запомнить пароль» до перезагрузки спектрометра (Рисунок 18). Если кнопка «Запомнить пароль» не нажата, то прибор будет запрашивать пароль каждый раз при попытке выполнения запароленного действия.

Для сброса пароля необходимо оставить поле ввода пароля пустым (в случае смены пароля администратора необходимо сначала ввести действующий пароль).

) ⊕ 29.5 °С ● Введите пароль Пароль для доступа к настройкам 1234			ОЛЬ астройкам	Вве Пароль д	Введите пароль Пароль для доступа к настройкам		
Пароль для включения прибора		8efgh	9ijkl		Запомнить пароль		
Пароль меню Настройки	/abcd			7abcd	8efgh	9ijkl	
Пароль администратора	4mnop	5qrst	6uvwx	4mnop	5qrst	6uvwx	
	1yz!@	2#\$%^	3/*()	1yz!@	2#\$%^	3/*()	
	0+?	<-	Shift	0+?	<-	Shift	
ОК	Отмена	a	ок	Отмен	Отмена		

Рисунок 18 Окно меню Безопасность, установка и проверка пароля для доступа к настройкам

• «Поверка» – выполнить функцию поверки прибора (п.4.8).
4.5.2.1. В комплект поставки ЛИС-01 входит держатель для смартфона, который позволяет закрепить телефон на ручке прибора (см. Приложение 5).

ПО LIS Mobile для смартфонов с ОС Android распространяется бесплатно. После установки ПО LIS Mobile на мобильный телефон вы получаете следующие возможности:

- Использование экрана мобильного телефона в качестве внешнего дисплея прибора, для просмотра изображения с камеры прибора и результатов измерений;
- Возможность добавлять описание, фото образца к измерению;
- Формировать отчеты;
- Редактировать марочники;
- Просматривать архив измерений.

Рисунок 19 Работа мобильного приложения

Более полная информация о возможностях приложения находится на странице приложения в Google Play Маркет.

Окно настроек работы с мобильным приложением имеет следующие элементы:

Рисунок 20 Окно настроек LIS Mobile

ΟK

Для установки мобильного приложения нажмите на кнопку «Скачать приложение». Появится QR-код (Рисунок 21) на который надо навести камеру смартфона (иногда для считывания ссылки по QRкоду нужно установить дополнительную программу). Перейдите по ссылке в Google Play Маркет и скачайте приложение LIS Mobile (программу также можно найти в Маркете с помощью поиска). Установите к себе на телефон программу LIS Mobile.

Рисунок 21 QR-код для скачивания мобильного приложения через Google Play Mapkem

Для подключения к прибору ЛИС-01 через LIS Mobile необходимо включить точку доступа на вашем смартфоне (смартфон станет работать в режиме модема, создавая свою сеть Wi-Fi).

Откройте мобильное приложение LIS Mobile. Нажмите кнопку Подключить. Мобильный телефон попросит разрешение на съемку фото и видео, а затем выдаст инструкцию для подключения к прибору:

- 1. На приборе ЛИС-01 откройте меню Настройки «Расширенные настройки».
- 2. Нажмите кнопку LIS Mobile Подключить.
- В верхней части экрана будет отображаться имя сети, к которой уже подключался спектрометр. Если имя сети не совпадает с точкой доступа на смартфоне, то нажмите кнопку «Сменить сеть».
- В списке Wi-Fi сетей выберите точку доступа, созданную на вашем смартфоне, нажмите кнопку ОК, введите пароль для подключения к точке доступа.
- 5. После отображения на экране прибора QR-кода, наведите на него камеру смартфона.
- 6. Поместите QR-код в окно видоискателя (Рисунок 22).

Рисунок 22 Установка и запуск мобильного приложения на смартфоне

После синхронизации настроек с прибором на экране смартфона отобразится вид камеры прибора с прицелом. Теперь за измерением можно наблюдать с экрана смартфона, закрепив его в более удобном положении с помощью держателя телефона, который идет в комплекте с прибором.

На экране спектрометра около обозначения заряда аккумуляторов

появится значок , который обозначает подключение смартфона.

Кнопка «Фото перед измерением» позволяет сразу до измерения сделать фото исследуемого образца, нажимая на курок спектрометра: перед измерением удерживайте курок – смартфон перейдет в режим фотоаппарата, убедитесь, что на фото попадают все необходимые элементы и надписи, отпустите курок. Проведите обычное измерение сфотографированного образца. В мобильном приложении LIS Mobile создастся запись измерения с прикрепленной фотографией (Рисунок 19). 4.5.2.2. Окно настроек интерфейса имеет следующие элементы:

Рисунок 23 Окно настроек интерфейса

- «Камера» включение/выключение камеры и ее подсветки. Включенная камера позволяет визуально контролировать область контроля на поверхности образца и точнее позиционировать спектрометр на контролируемой поверхности.
- «РРМ» вывод результата измерений не в процентах, а в РРМ.
- «СКО» включение/выключение отображения СКО измерения в серии.
- «CE» позволяет для каждого выполненного измерения включить/выключить отображение углеродного эквивалента (CE от англ. Carbon Equivalent) для экспресс-оценки свариваемости сталей. Международный институт сварки (International Institute of Welding) использует формулу Деардена и О-Нила для расчета углеродного эквивалента (формула 3), по которой рассчитывается CE и в нашем приборе. Ее описание можно найти в п. 7.2.3 EN 10025-1:2004.

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$
(3)

где СЕ – углеродный эквивалент свариваемости сталей,

С – содержание углерода,

Mn, Cr, Mo, V, Ni, Cu – содержание легирующих элементов.

В таблице 6 показано условное разделение на группы свариваемости и подсветка прибором результата.

Таблица 6. Выделение цветом полученного углеродного эквивалента для сталей

CE	Свариваемость стали
<0.35	отличная
0.36-0.40	очень хорошая
0.41-0.45	хорошая
0.46-0.50	средняя
>0.50	плохая

Рисунок 24 Измерение стали с отображением углеродного эквивалента

- Элементы настройки интервала задержки между нажатиями клавиш меню. Увеличение времени задержки может быть полезно при работе в чехле и перчатках для устранения ложных срабатываний. При работе в лабораторных условиях задержка может быть установлена в 0. Регулировка интервала производится кнопками «+» и «-».
- Элементы настройки времени перехода прибора в спящий режим. Для отключения спящего режима кнопкой «-» установите значение параметра в «Выкл.». Для вывода прибора из режима сна нажмите на курок несколько раз или коснитесь экрана.
- Формат отображения измерения: два или три знака после запятой.
- Выбор языка интерфейса прибора происходит нажатием на стрелочки влево/вправо. Возможные варианты: русский, немецкий, английский. Для применения другого языка выберите его среди имеющихся, нажмите кнопку ОК и перезагрузите прибор.
- 4.5.2.3. Окно настроек параметров измерения имеет следующие элементы:

		28.8	8 °C 🔘	
Измерений в серии	:			
5		10		
Количество серий:	_			
Одна	F	Іескол	ько	
Задержка импульса, мс	40	+	-	
Позиционирование				
Данные для поддержки				
Низкие температуры				
	ОК			

Рисунок 25 Окно настроек параметров измерения

• Переключатель количества измерений в серии (5 либо 10).

Переключатель усреднения нескольких серий измерений. При нажатой кнопке «Одна» выводится один результат по текущему измерению с отображением СКО. Если нажата кнопка «Несколько», то на экране будет отображаться последовательность измерений серий и их среднее значение (см. Рисунок 26). Каждое отдельное измерение и усредненный результат сохраняются в архиве. При коротком нажатии на кнопку запуска измерений прибор отобразит на экране среднее по измеренным значениям, СКО и марку (здесь же появится возможность выбора марки из других марочников, см пп 4.2.5 - 4.2.6). Подобное усреднение результатов можно повторить с отдельно снятыми сериями измерений (при нажатой кнопке «Одна») с помощью функций архива (см. п. 4.3.7).

Рисунок 26 Измерение с функцией усреднения нескольких серий. Справа показан вид экрана после короткого нажатия кнопки запуска измерений

Элементы настройки времени задержки импульса. Устанавливает задержку между включением лазера и началом анализа спектра. Изменение параметра может потребоваться для получения состава образца на различной глубине (например, при анализе цинкования). При увеличении времени задержки импульса увеличивается время прожига, таким образом выводятся с большей глубины. Для результаты измерения измерения поверхностного слоя (напыления) необходимо уменьшить задержку импульса. При измерении с измененными параметрами задержки, на экране будет отображаться надпись «Пользовательские настройки». Внимание! Необходимо возвращать данный параметр к исходному значению для рутинных измерений образцов.

 Кнопка включения функции Позиционирования. При включении этой функции производится контроль положения образца перед отверстием спектрометра. При неправильном положении "прицел" отображается красным, при правильном – зеленым (Рисунок 27). Измерение производится автоматически через 0,5 секунд после определения корректного положения образца.

Рисунок 27 Измерение с функцией Позиционирование

 Кнопка включения записи спектров для службы технической поддержки. При нажатой кнопке «Данные для поддержки» происходит сохранение всех спектров измерений от начала включения прибора.

Внимание! После выключения прибора папка с сохраненными спектрами очищается. Если данная кнопка отжата, то кнопка со знаком вопроса на главном экране отображаться не будет.

 Настройка прогрева прибора для работы при отрицательных температурах и его отключение при необходимости остаться в помещении. При нажатии на кнопку «Низкие температуры» открывается окно (Рисунок 28), аналогичное настройкам при включении прибора. Перемещая ползунки на экране, выберите примерную температуру на улице и планируемое время измерений. Начнется прогрев прибора. Будет показана температура, до которой прогреется прибор, и примерное время ожидания. Когда прогрев окончится, то на экране появится надпись «Готов к работе».

В любой момент времени можно нажать кнопку «Начать работу» и продолжить измерения, но до окончания прогрева прибора не советуем покидать теплое помещение. На главном экране будет

отображаться значок в виде снежинки, что говорит о том, что используется режим работы на улице. Если рядом с индикацией температуры внутри корпуса прибора отображаются стрелочки

25.9 °C², то это значит, что в данный момент прибор нагревает себя для работы при отрицательных температурах (до параметров, заданных в настройках прогрева). Прибор готов к работе в случае исчезновения стрелочек.

Если вы хотите отменить нагрев, то нажмите Отмена в окне «Низкие температуры».

Рисунок 28 Окно настроек прогрева прибора для работы при отрицательных температурах

4.6. Калибровка

- 4.6.1. Функция калибровки предназначена для увеличения точности количественного анализа спектрометра.
- 4.6.2. Калибровку рекомендуются проводить, если на образцах сплавов пользователя, для которых известен точный химический состав (например, ГСО), прибор показывает количественные значения концентраций, выходящие за допустимую погрешность измерения. Например, перекалибровка может потребоваться из-за изменившейся температуры окружающей среды.
- 4.6.3. При наличии пары образцов можно выполнить последовательно измерения каждого из них, изменив шкалу определения концентраций нужных элементов.
- 4.6.4. Для обеспечения метрологической точности последующих измерений рекомендуется производить калибровку, как минимум по двум образцам с разными концентрациями нужных в данный момент для анализа примесей и примерно одинаковым содержанием основы.
- 4.6.5. Для каждой базы данных заводится свой список калибровок, так как базы данных содержат индивидуальную настроечную информацию для каждого класса контролируемых изделий (подробнее см. п. 4.5.1.7).
- 4.6.6. Выбранные образцы для калибровки должны быть сохранены в качестве эталонов (см. п. 4.9 «Эталоны»).
- 4.6.7. В режиме Калибровка пользователь может выбрать ранее сохраненную калибровку или создать новую для выбранной базы данных.
- 4.6.8. Выбор ранее сохраненной калибровки.
- 4.6.8.1. Нажмите кнопку «Настройки», затем кнопку «Калибровка». Для выбора конкретной калибровки, выберите строку с ее названием. Нажмите кнопку ОК. Можно использовать кнопки вверх/вниз.

°C	+ 🖍 🗙	°C	+ 🖍 🗙
Калиброл <u>Ч</u> нет <u>Зуглерод 27</u> <u>Зуглерод 28</u> <u>Чуглерод 29</u> <u>Чугун</u>	3Ka	Калибро Нет *Углерод 27 *Углерод 28 *Углерод 29 *Углерод 29	DBKa
Отмена	ок	Отмена	ок

Рисунок 29 Окно выбора калибровки

- 4.6.8.2. Для отключения дополнительной калибровки и использования заложенных производителем параметров выберите пункт «Нет».
- 4.6.8.3. Для автоматического выбора калибровки, в зависимости от

температуры прибора, нажмите кнопку С. Калибровки, в которых указаны температурные диапазоны подсветятся зеленым (см. Рисунок 29). Жирным шрифтом будет выделена та калибровка, которая активна при текущей температуре внутри прибора. Нажмите кнопку ОК.

- 4.6.9. Создание новой калибровки.
 - 4.6.9.1. Нажмите кнопку «Настройки», затем кнопку «Калибровка».
 - 4.6.9.2. Для создания новой калибровки нажмите кнопку
 - 4.6.9.3. Введите наименование новой калибровки, нажмите кнопку ОК.

Рисунок 30 Окно для ввода наименования калибровки

4.6.9.4. Задайте параметры калибровки.

Рисунок 31 Окно настройки параметров калибровки

Окно настройки параметров калибровки содержит следующие элементы:

- Поле наименования калибровки. Для возврата к диалогу ввода/редактирования наименования нажмите кнопку «Редактировать»
- Элементы редактирования Минимальной и Максимальной температур. Параметры применяются при включении режима автоматического выбора калибровки по температуре (см. п. 4.6.8.3). Калибровка будет автоматически включена, если температура внутри спектрометра попадает в заданный диапазон. Если калибровку предполагается использовать только при ручном

выборе, значения параметров можно установить в 0. Кнопки позволяют установить текущую температуру прибора и на 1 градус выше.

 Таблица выбора химических элементов. Расчет данных калибровки будет произведен для элементов, отмеченных в таблице зеленым цветом. Выбор строки таблицы осуществляется нажатием на экран или на соответствующую кнопку вверх/вниз.

- Для того, чтобы пометить элемент / снять выделение с элемента нажмите кнопку
- Если калибровка была произведена ранее для определенного химического элемента, то кнопка станет активна. Подробнее в пункте 4.6.10.5.
- 4.6.9.5. Для продолжения нажмите кнопку ОК. В зависимости от выбранных химических элементов программное обеспечение предложит список образцов для калибровки.

Рисунок 32 Окно выбора калибровочного образца

- 4.6.9.6. В диалоговом окне выбора эталона кнопками влево/вправо выберите первый образец. Для изменения списка доступных образцов и/или изменения их состава см. п. 4.9 «Эталоны».
- 4.6.9.7. Нажмите кнопку ОК.
- 4.6.9.8. Выполните серийную съемку образца.

4.6.9.9. После завершения съемки в окне данных последнего измерения будет показана следующая информация:

Рисунок 33 Просмотр информации последнего измерения

- Элемент, концентрация и СКО данного измерения по действующей калибровке, эталонное значение для выбранного образца.
- Таблица с полученными значениями интенсивности и концентрации для построения зависимости новой калибровки.
- Вид калибровочной кривой. Синим цветом обозначена действующая зависимость. Красным – новая, полученная по измеренным вами точкам (через одну точку прямая не проводится).
- Кнопка «Отмена» для удаления точки из калибровки и кнопка ОК, чтобы оставить полученное измерение в калибровке.
- 4.6.9.10.После добавления точки в калибровку или ее удаления вам будет предложено выбрать следующий образец. Зеленым цветом будут выделены образцы, которые были измерены для калибровки. Строки элементов закрашены зеленым – эти концентрации записаны в калибровку (Рисунок 32).
- 4.6.9.11.В окне выбора эталона для каждого из элементов можно просмотреть список точек и вид калибровочных кривых. Для этого

в окне выбора эталона кнопками вверх/вниз выберите элемент и

нажмите кнопку просмотра дополнительной информации

Рисунок 34 Просмотр калибровочной информации

- 4.6.9.12. Для продолжения калибровки по следующему образцу повторите пп 4.6.9.6 - 4.6.9.10, для окончания калибровки нажмите кнопку «Завершить».
- 4.6.10. Изменение ранее сохраненной калибровки.
 - 4.6.10.1. Нажмите кнопку «Настройки», затем кнопку «Калибровка».
 - 4.6.10.2.Выбор калибровки осуществляется нажатием на экран или кнопками вверх/вниз.
 - 4.6.10.3. Нажмите кнопку редактирования калибровки 🔽
 - 4.6.10.4.В диалоговом окне настройки параметров калибровки можно изменить минимальную и максимальную температуру для автоматического выбора калибровки, наименование калибровки.

Рисунок 35 Изменение и просмотр параметров калибровки

4.6.10.5. Если для химического элемента уже существуют калибровочные данные, в строке элемента содержится запись «Есть в БД». Точки калибровки и калибровочную кривую можно посмотреть, нажав на

кнопку (Рисунок 35). Для выхода из окна просмотра калибровочной кривой нажмите ОК.

4.6.10.6.Для удаления ранее сохраненных калибровочных данных элемента кнопками вверх/вниз выделите нужную строку и нажмите кнопку

удаления данных калибровки X.

4.6.10.7.Отметьте строки химические элементов, для которых необходимо добавить/изменить калибровочные данные, с помощью кнопки

выделения 🤎 и нажмите кнопку ОК.

- 4.6.10.8.Выполните съемку калибровочных образцов аналогично пп 4.6.9.6 4.6.9.10.
- 4.6.10.9.Для отмены изменений, введенных в калибровку, нажмите «Отмена».

31.3 °C ()	Новы	й	~	×	Новый	
	AI	Мин., % 0.00	Макс., % 0.00		2 13ХФА 3 У8А	
Вазовый	C Co	0.00	0.00		⁴ CT45 5 9XC 5 38Γ2CΦ	``
Редактировать марочник	Cu Fe	0.00	0.00	\sim	7 32ХГМА 8 Ст20	
	Mn	0.00	0.00		» 10XCHД 10 09Г2C	
		<	>		11 12ХІМФ 12 10Г2ФБЮ 13 40Х	^
		7 8	9		14 14XH3MA 15 CH20	
		4 5	6		16 CH25 17 95X18	
		1 2	3		10 15X5M 10 30XFCH2A	
		o .	<-		20 10 45 21 30XΓCA 22 X12ΜΦ	
ОК		Отмена	Сохранити		23 A 4B-1	
		ormend	сохраните		Отмена	ок

4.7. Редактор марочника

Рисунок 36 Редактор марочника

- 4.7.1. Для открытия редактора марочника нажмите кнопку «Марочник» в Расширенных настройках.
- 4.7.2. При наличии нескольких вариантов марочников (например, ГОСТ и AISI), выберите необходимый, используя стрелки вправо/влево. Нажмите кнопку «Редактировать марочник» (Рисунок 36), чтобы перейти к редактированию или добавлению марок.
- 4.7.3. Для копирования марки из одного марочника в другой:
 - Выберите необходимый материал.
 - Нажмите на кнопку
 - Выберите из списка марочник, в который надо скопировать выбранный материал.
- 4.7.4. Для добавления нового материала:
 - Выберите материал с именем «Новый».
 - Измените наименование материала (при выборе данного окна экранная клавиатура сменится на символьную, см. п.4.7.7).
 - Измените концентрации элементов (экранная клавиатура изменится на цифровую, см. п.4.7.6).
 - Для сохранения изменений нажмите кнопку «Сохранить», для выхода из редактора марочника без сохранения изменений - кнопку «Отмена».

4.7.4.1. Выбор редактируемого материала производится с помощью списка

марок, который появляется при нажатии кнопки . Перемещение по списку можно осуществлять с помощью удержания клавиши вверх или вниз. Поиск марки по названию можно осуществить с

помощью кнопки с изображением лупы

4.7.5. Для выбора материала для редактирования нажмите OK, для возврата нажмите «Отмена».

Рисунок 37 Редактирование материала выбранного марочника

- 4.7.6. Редактирование концентрации элемента выбранной марки (Рисунок 37):
 - Кнопками вверх/вниз, расположенными справа от таблицы концентраций выберите строку элемента, концентрацию которого нужно изменить.
 - Кнопками влево/вправо, расположенными под таблицей, выберите столбец для редактирования минимальной, либо максимальной концентрации.
 - Редактируемая область подсвечивается синим цветом;
 - При нажатии на кнопки цифровой экранной клавиатуры будет изменяться значение в выбранной ячейке таблицы.
- 4.7.7. Для изменения названия материала нажмите на поле с его именем, цифровая экранная клавиатура изменится на символьную, а само наименование выделяется синей рамкой.

4.7.8. Вид символьной клавиатуры можно менять с помощью

- 4.7.9. На клавиатуре с отдельными кнопками для каждой буквы можно также вставить некоторые символы, поменять регистр (прописные или строчные), выбрать язык клавиатуры (русский или английский).
- 4.7.10.Другой тип клавиатуры имеет крупные кнопки для более простого использования без стилуса. На некоторых кнопках расположено несколько символов - для смены символа удерживайте клавишу нажатой. Редактирование названия материала завершается нажатием кнопки «Сохранить», либо при выборе ячейки таблицы клавишами: вверх, вниз, влево, вправо или нажатием на экран в другую область.
- 4.7.11. Внимание! Обратите внимание на необходимость ввода элемента, являющегося основой.
- 4.7.12. Элементы, концентрация которых учитывается при поиске марки, подсвечиваются зеленым цветом. Имеется возможность исключить один или несколько элементов, входящих в марку, из условий поиска. Для включения/отключения элемента:
 - Кнопками вверх/вниз, расположенными справа от таблицы концентраций выберите строку элемента;
 - Нажмите кнопку включить/выключить элемент 🔍.
- 4.7.13. Удаление материала из справочника осуществляется нажатием кнопки удаления **ж**.

4.8. Поверка

Меню «Поверка» предназначено для выполнения метрологической поверки спектрометра согласно утвержденной методике. Для контрольного образца, следуя указаниям на экране, проводят не менее 10 измерений интенсивности выходного сигнала на эмиссионном спектре для линий Cr (284.33 нм), Mn (279.83 нм), Si (288.16 нм), Ni (221.65 нм). В результате измерений для заданных линий спектрометр в верхней части экрана выводит таблицу интенсивности выходного сигнала, СКО и чувствительности. В нижней части экрана выводится спектральное разрешение на длине волны 221.65.

4.9. Эталоны

- 4.9.1. При работе в режимах «Сравнение с эталоном», «Калибровка» требуется указать элементный состав образцов. Для облегчения этой задачи используется список эталонов. Он позволяет заранее задать и сохранить в памяти прибора составы используемых эталонов.
- 4.9.2. Для редактирования списка эталонов требуется нажать кнопку «Настройки» и выбрать пункт «Эталоны».

<	ug115	5		>	×	
	Конц	ентра	ация,	%		
С		0.11	L			
Si		0.23	3		\sim	
Mn		0.43	3			
Cr		0.81	L			
		1.63	5			
		0.17			\sim	
Co						
Fe						
	7	5	3		9	
	4	5			6	
	1	2			3	
	0	<-		<-		
	Отмена	мена ОК				

Рисунок 38 Окно выбора и редактирования эталона

- 4.9.3. Для каждой базы данных используется свой список эталонов.
- 4.9.4. Выбор эталона для редактирования осуществляется стрелками влево/вправо.
- 4.9.5. Для изменения эталона:
 - Кнопками вверх/вниз выберите изменяемый элемент.
 - С помощью кнопок цифровой экранной клавиатуры введите концентрацию.
- 4.9.6. Для создания нового эталона:
 - Кнопками влево/вправо выберите эталон с именем «Новый».
 - При нажатии на поле имени эталона цифровая клавиатура заменяется на символьную введите имя нового эталона.

- Задайте концентрацию элементов образца. Набор элементов, которые можно задать зависит от выбранной в настройках базы данных.
- 4.9.7. Удаление эталона осуществляется нажатием кнопки 🙁

5. Хранение и эксплуатация изделия

Эксплуатация изделия должна осуществляться в соответствии с настоящим руководством по эксплуатации изделия.

В течение всего гарантийного срока установленные предприятиемизготовителем пломбы и этикетки должны быть сохранены.

Не допускается работа с незащищенным прибором под дождём.

Прибор транспортируют в закрытых транспортных средствах любого вида, согласно Правил транспортирования, действующих на каждом виде транспорта, при температуре окружающего воздуха от -30 до +70 °C и относительной влажности воздуха до 95 % при температуре +25 °C.

Прибор следует хранить на складах при температуре окружающего воздуха от -30 до +70 °C и относительной влажности воздуха 80% (при температуре +25 °C).

Начало эксплуатации прибора после длительного хранения при низких температурах допускается только после выдерживания технологической паузы в условиях эксплуатируемого помещения.

По вопросам эксплуатации или гарантии следует обращаться в сервисную службу ООО «НПП СТРУКТУРНАЯ ДИАГНОСТИКА» по телефону +7 (343) 319-12-62 или электронной почте mail@nppsd.ru.

6. Сведения об утилизации

Изделие не представляет опасности для жизни, здоровья людей и окружающей среды после окончания срока эксплуатации.

Утилизация проводится потребителем в соответствии с общими требованиями к утилизации изделий электронной (вычислительной) техники.

Приложение 1. Возможные неисправности и методы их

устранения

Описание неисправности	Возможная причина	Методы устранения
Спектрометр не	Перегорел плавкий	Замените предохранитель (см.
включается. ЖК	предохранитель	Руководство по техническому
индикатор не горит		оослуживанию)
	Разряжена	При необходимости зарядите
	аккумуляторная	аккумуляторные батареи
	батарея	
Прибор включен, но	Спектрометр ушел	Нажмите на кнопку запуска
экран не включается	в режим сна	измерения прибора, а затем на
и не реагирует на		экран
нажатия		

Приложение 2. Возможные сообщения об ошибках и причины их

появления

Сообщение об ошибке	Возможная причина	Методы устранения
После измерения контрольного образца (КО) не отображается соответствующая марка	Разряжена аккумуляторная батарея	Зарядите аккумуляторные батареи или замените на аккумуляторы с высоким уровнем заряда
	Плохое прилегание КО к входному отверстию	Обеспечить нормальное прилегание образца
	Загрязнение защитного стекла	Следует произвести очистку или замену защитного стекла прибора (см. Приложение 3)
	Проблемы с КО (подмена)	Замена КО или переаттестация КО
	Выход из строя прибора	Обратится к производителю в соответствии с регламентом по гарантийному/постгарантийному обслуживанию
Низкий уровень сигнала. Протрите защитное стекло.	Загрязнение защитного стекла	Следует произвести очистку или замену защитного стекла прибора (см. Приложение 3)
Повторите измерение контрольного образца	Плохое прилегание образца к входному отверстию	Обеспечить нормальное прилегание образца
	Поверхность образца имеет загрязнения	Зачистите поверхность с помощью наждачной бумаги или других специальных средств

Потеряна связь с контроллером. Выключите спектрометр из сети питания, извлеките аккумуляторы. Включите прибор снова	Произошла ошибка в процессе передачи данных от блока спектрометра	Обесточьте прибор (отсоедините сетевой шнур и/или извлеките аккумуляторные батареи), а затем снова включите. При работе от аккумуляторных батарей попробуйте заменить их на другие
Пожалуйста, подождите Гожалуйста, подождите	Спектрометр выходит на рабочий режим при включении прибора или смене задержки Температура	Подождите, пока не исчезнет окно с предупреждением Выключить прибор и перенести
	внутри прибора стала ниже возможной рабочей (температура отображается в верхней части экрана)	в теплое помещение. Ознакомътесь с разделом 3 настоящего руководства
	Долгая работа в режиме Позиционирование	Прекратить измерение, дождаться исчезновения сообщения. Продолжить работу. Измерения, сделанные во время появления сообщения считать недействительными
Пожалуйста, подождите (не в отдельном окне)	Произошла ошибка в процессе передачи данных от блока спектрометра	Подождите 30 секунд и повторите измерение. Если сообщение об ошибке не исчезло, перезагрузите прибор
Превышена температура прибор. Продолжение работы может привести к ошибкам в измерениях. Отключите питание прибора на 30 минут	Температура внутри корпуса прибора стала выше возможной рабочей	Выключите прибор (отсоедините шнур писания, если прибор был подключен к сети). Подождите примерно 30 минут (для ускорения процесса остывания, можно поместить в прохладное помещение)

Приложение 3 Очистка защитного стекла

Перед каждым началом работы со спектрометром рекомендуется протирать защитное стекло. Как правило, достаточно просунуть ватную палочку через отверстие носика прибора и протереть стекло.

Прибор напоминает о необходимости протирать защитное стекло, что позволяет не забыть о данной процедуре.

Протрите защитное стекло
ОК

При сильном загрязнении необходимо открутить винты защитной крышки на носике и протереть всю площадь стекла.

- 1. С помощью крестовой отвертки открутите два крепежных винта, удерживающих металлическую накладку на носике.
- Используя сухую чистую ватную палочку протрите всю поверхность защитного стекла.
 Внимание! Использование спиртосодержащих жидкостей может привести к замутнению стекла и ухудшению получаемых результатов.
- С помощью крестовой отвертки закрепите металлическую накладку на носик.
- 4. Прибор готов к дальнейшей работе.

Приложение 4. Замена аккумуляторных батарей

- 1. Отключите шнур внешнего блока питания от прибора, если работа производилась от сети 220 В.
- 2. Установите прибор вверх крышкой батарейного отсека.

3. Открутите четыре винта батарейного отсека с помощью отвертки, которая идет в комплекте с прибором.

5. Вставьте другой комплект аккумуляторных батарей (Внимание! Ленту размещайте под аккумуляторами для простоты извлечения их из батарейного отсека).

- 6. Закрутите винты батарейного отсека.
- 7. Переверните прибор в рабочее состояние: вверх экраном.
- 8. Прибор готов к дальнейшей работе.

4.

Приложение 5. Установка смартфона на ручку спектрометра с помощью держателя для телефона

- 1. Поставьте прибор на стол или другую твердую поверхность.
- 2. Достаньте держатель для телефона и открутите винт от держателя.

3. Вставьте винт в удобное для вас отверстие на ручке (слева или справа).

4. Закрутите винт в резьбу на держателе.

5. Установите смартфон, выдвинув подвижную часть держателя для телефонов.

6. Скачайте мобильное приложение, установите на смартфон и подключитесь к спектрометру (см. п.4.5.2.1).

Прибор готов к измерениям.

Экран телефона можно повернуть в удобное для вас положение.

Изготовитель

Наименование предприятия:

ООО «НПП «СТРУКТУРНАЯ ДИАГНОСТИКА».

Полное наименование:

Общество с ограниченной ответственностью «НАУЧНО-

ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «СТРУКТУРНАЯ ДИАГНОСТИКА»

Юридический адрес (использовать в накладных, фактурах и т.п.):

Россия, 620010, г. Екатеринбург, ул. КОНСТРУКТОРОВ 5, офис 303

Почтовый адрес (использовать для отправления почты):

Россия, 620010, г. Екатеринбург, ул. КОНСТРУКТОРОВ 5, офис 303

ИНН/КПП 6670477270/ 667001001

Телефон/факс +7 (343) 319-12-62

OFPH 1196658001297
Гарантийный талон

Гарантийный талон	
Изделие	Портативный лазерный спектрометр ЛИС-01
Модель	ЛИС-01
Серийный номер	
Дата продажи	«»20г.
	М.П.
Срок гарантии	24 месяца
Производитель	ООО «НПП «СТРУКТУРНАЯ ДИАГНОСТИКА»
Отметка ОТК	

Требования к условиям эксплуатации

Диапазон температур окружающей среды: от минус 15 до плюс 40 °C.

Относительная влажность воздуха: не более 90 % при 25 °C без конденсации влаги (группа 7 по ГОСТ 22261).

Не допускать использование под дождем и мокрым снегом.

При стационарном использовании спектрометра, устанавливать в месте, защищенном от затопления водой или другими жидкостями.

Не допускать контакта корпуса спектрометра с химически активными жидкостями и газами.

Не производить монтаж или демонтаж спектрометра вне авторизованного центра.

Гарантия изготовителя

Фирма-изготовитель предоставляет на приобретённый Вами спектрометр, к которому при покупке был выдан настоящий Гарантийный талон, гарантию сроком 24 месяца.

Внимание! Важная информация для потребителей:

Гарантия не распространяется на гальванические элементы в составе прибора.

Изготовитель не несёт ответственность за недостатки спектрометра, если они возникли после передачи спектрометра потребителю, вследствие нарушения им правил установки, пользования, транспортировки, хранения, действия третьих лиц, непреодолимой силы (пожара, природной катастрофы и т.п.), воздействия иных посторонних факторов (например, электромагнитного излучения или статического электричества), а также вследствие нарушений технических требований, оговоренных в инструкции по эксплуатации и в Условиях прекращения гарантийных обязательств настоящего гарантийного талона.

Изготовитель снимает с себя ответственность за возможный вред, прямо или косвенно нанесенный продукцией ООО «НПП «СТРУКТУРНАЯ ДИАГНОСТИКА», если это произошло в результате несоблюдения правил и условий эксплуатации, установки изделия, умышленных или неосторожных действий потребителя или третьих лиц.

По вопросам эксплуатации, гарантийного и постгарантийного обслуживания Вы можете обратиться в сервисную службу ООО «НПП «СТРУКТУРНАЯ ДИАГНОСТИКА» по телефону +7(343)319-12-62 или электронной почте mail@nppsd.ru.

Условия прекращения гарантийных обязательств

- Нарушение правил транспортирования, хранения, монтажа и требований к условиям эксплуатации.
- Наличие механических повреждений корпуса спектрометра, внутренних модулей, элементов, проводников, наличие перепаек, проколов и повреждений соединительных кабелей, корпуса антенны, гарантийных наклеек, пломб и механических повреждений иных частей.
- Наличие следов попыток неквалифицированного ремонта.
- Наличие изменений конструкции спектрометра, не предусмотренных Производителем.
- Наличие повреждений, вызванных попаданием внутрь корпуса спектрометра посторонних предметов, химических веществ, жидкостей, животных или насекомых.
- Нарушение печатного монтажа платы, радиоэлементов и модулей спектрометра вследствие окисления или возгорания.
- Монтаж и обслуживание спектрометра не квалифицированным персоналом.
- Использование спектрометра не по назначению.
- Несанкционированное вмешательство во встроенное программное обеспечение спектрометра.
- Изменение программного обеспечения и настроек спектрометра, приведшее к нарушению его функционирования.